What is EventManager?

Dedication

EventManager is a software tool dedicated to programmers of VisualBasic-5.0, Access-7.0 or any other languages which support ActiveX-Dlls.

Description

In cooperation between the end user who finally will use your program and you, the programmer, a table of possible events shall be defined. Possible events are e.g. switching on a machine, starting a program, dialling a phone number and so on. Later on the end user shall be able without assistance to add "times" to each of the defined events: points of time, periods of time, repeating intervals and exceptions. EventManager offers complete input masks for every purpose.

You write the action coding, EventManager controls the time the action will start.

EventManager allows you easy writting of time controlled programs.

You need not waste time and money to program input masks and viewers, or to program the loading and saving of events, or even to program an algorithm for time control etc. EventManager offers a lot of properties and methods which will do this for you.

Features

1. EventManager consists of only two Dll's: Event01.dll and a support Dll.

2. Don't think about input masks to add, edit, or view events, they are integrated

3. Don't think about time control, EventManager controlls the time for you

4. You can customize the language with your own message-dll (English/German included)

5. A simple password checking is included

6. You can control the behavior of the list form by program parameters

7. All you need to write a fully featured time control program launcher is a coding like this:

Private Sub Timer1_Timer()

Dim sIdentifier As String

Dim sDescription As String

Dim sParameter As String

Dim bAlarm As Boolean

Dim lRet As Long

Do

 sIdentifier = omRoot.CTiEventEngine.ActivEvent 		(sDescription, sParameter, bAlarm)

 If sIdentifier = "" Then Exit Do

 On Error Resume Next

 lRet = Shell(sParameter)

 On Error GoTo 0

Loop

End Sub

Required Files

MSVBVM50.DLL		file from Visual Basic 5.00

STDOLE2.TLB		file from Visual Basic 5.00

OLEAUT32.DLL		file from Visual Basic 5.00

OLEPRO32.DLL		file from Visual Basic 5.00

ASYCFILT.DLL		file from Visual Basic 5.00

CTL3D32.DLL		file from Visual Basic 5.00

COMCAT.DLL		file from Visual Basic 5.00

MSFLXGRD.OCX		file from Visual Basic 5.00

TABCTL32.OCX		file from Visual Basic 5.00

COMCTL32.OCX		file from Visual Basic 5.00

Included Files

EVENT01.DLL		ActivX-Dll - EventManager

ACTBAR.OCX		needed from EventManager

TIMEEXEC.VBP		Example

TIMEEXEC.FRM		Example

TIMEEXEC.BAS		Example

TIMEEXEC.EXE		Example

TIMEEXEC.DAT		Example - saved events which you can load

TIMEEXEC.TAB		Example - exception table

TIMEEXEC.DLL		Example - message dll

MSGENG.TXT		ascii file with english messages (for your own message dll)

MSGGER.TXT		ascii file with german messages (for your own message dll)

README.DOC		this file

Methods / Properties

ActivEvent(srDescription As String, srParameter As String, brAlarm As Boolean) As String

Description:

This function returns the event identifier of a pending event.

Returns:

The identifier of a pending event or "".

Input-Parameters:

None

Return-Parameters:

srDescription		the description of the event

srParameter		the parameter of the event

brAlarm		alarm (yes=true / no=false): true, if delay is greater than 				max. delay

Add([sBefore As String = ""])

Description:

This function displays an input mask and adds one event to the EventManager if the user presses the OK-Button.

Returns:

None

Input-Parameters:

sBefore		If sBefore is a valid identifier the new event will be 			added before, otherwise the new event will be added behind all 			other events.

Return-Parameters:

None

ExistEvent(ByVal sIdentifier As String) As Boolean

Description:

This function checks if there exists an event with the specified identifier.

Returns:

false	There exists no event with the specified identifier

true	There exists an event with the specified identifier

Input-Parameters:

sIdentifier	The identifier of an event

Return-Parameters:

None

Init(ByVal hMsg As Long, ByVal iOffSet As Integer)

Description:

This function gives you the power to use your own language message-dll.

Returns:

None

Input-Parameters:

hMsg		Your message-dll handle or -1 (-1 = no message-dll, default is 			german)

iOffSet		Offset where the messages for the EventManager start.

Return-Parameters:

None

LoadObjects(ByVal sFile As String)

Description:

This function allows you to load the saved events from a specified file.

Loading an event with an existing identifier will cause an Error!!!

Use RemoveAll() to delete all events first.

Returns:

None

Input-Parameters:

sFile	The file from which you want to load the events

Return-Parameters:

None

objShowEvents As Object

Description:

This function lets you know, if the form which display all events is still running or if the user has quit.

Returns:

Returns "nothing" when the form is not running.

Input-Parameters:

None

Return-Parameters:

None

Remove(ByVal sIdentifier As String)

Description:

This function deletes the specified event.

Returns:

None

Input-Parameters:

sIdentifier	The identifier of the event to be removed

Return-Parameters:

None

RemoveAll()

Description:

This function deletes all events from the EventManager.

Returns:

None

Input-Parameters:

None

Return-Parameters:

None

SaveObjects(ByVal sFile As String)

Description:

This function saves all events from the EventManager to the specified file.

Returns:

None

Input-Parameters:

sFile	File where you want to save all events.

Return-Parameters:

None

Show(ByVal sIdentifier As String)

Description:

This function shows a specified event in detail.

Returns:

None

Input-Parameters:

sIdentifier	The identifier of an event

Return-Parameters:

None

ShowEvents(ByVal iStyle As Integer, [ByVal bEdit As Boolean = True], [ByVal sFile As String = ""], [ByVal sPassword As String = ""])

Description:

This function shows all events known by the EventManager.

Returns:

None

Input-Parameters:

iStyle		Window-Style (vbModal, vbNormal)

bEdit		True	the user is allowed to add/update/delete events

			False	the user is not allowed to add/update/delete events

sFile		""	the user is not allowed to load/save the events

			<>""	the user is allowed to load/save the events

sPassword	""	no password checking

			<>""	the user must enter a password if he wants to

				load/save/add/update/delete an event

Return-Parameters:

None

UnlessTable As String

Description:

This function gives you the power to create your own exception table for individual holidays, etc.

Returns:

None

Input-Parameters:

A file which contains your exception table.

Return-Parameters:

None

File-Format:

Check the syntax of the lines included in the file, especially the date format which depends of your country settings!! Lines which can not be interpreted are ignored by the program.

ATTENTION:

You will not get any error or error message, if you use a wrong date format!

Syntax:

[valid date] [remark]

Example:

24.12.1997 Christmas

01.01.1998 New Year

Remark:

You need not to stop your program if you want to edit the UnlessTable. The EventManager automatically reads the new UnlessTable as soon as you finished the file update.

Update(ByVal sIdentifier As String)

Description:

This function displays an input mask and updates an event from the EventManager if the user presses the OK-Button.

Returns:

None

Input-Parameters:

sIdentifier	The identifier of an event

Return-Parameters:

None

